On global asymptotic stability of nonlinear higher-order difference equations
نویسندگان
چکیده
منابع مشابه
Global asymptotic stability of a higher order rational difference equation
In this note, we consider the following rational difference equation: xn+1 = f (xn−r1 , . . . , xn−rk )g(xn−m1 , . . . , xn−ml )+ 1 f (xn−r1 , . . . , xn−rk )+ g(xn−m1 , . . . , xn−ml ) , n= 0,1, . . . , where f ∈ C((0,+∞)k, (0,+∞)) and g ∈ C((0,+∞)l, (0,+∞)) with k, l ∈ {1,2, . . .}, 0 r1 < · · ·< rk and 0 m1 < · · ·<ml , and the initial values are positive real numbers. We give sufficient con...
متن کاملSome recent global stability results for higher order difference equations ∗
We give a brief overview of some recent results for the global asymptotic stability of a difference equation xn+1 = f(n, xn, . . . , xn−k), n ≥ 0, assuming that the zero solution is the unique equilibrium. Different techniques are used, involving the use of new discrete inequalities, monotonicity arguments, and delay perturbation methods. For the particular case of linear autonomous difference ...
متن کاملOn explicit conditions for the asymptotic stability of linear higher order difference equations
We derive some explicit sufficient conditions for the asymptotic stability of the zero solution in a general linear higher order difference equation, and compare our estimations with other related results in the literature. Our main result also applies to some nonlinear perturbations satisfying a kind of sublinearity condition. 2004 Elsevier Inc. All rights reserved.
متن کاملFixed points and asymptotic stability of nonlinear fractional difference equations
In this paper, we discuss nonlinear fractional difference equations with the Caputo like difference operator. Some asymptotic stability results of equations under investigated are obtained by employing Schauder fixed point theorem and discrete Arzela-Ascoli’s theorem. Three examples are also provided to illustrate our main results.
متن کاملGlobal Asymptotic Stability of Solutions of Cubic Stochastic Difference Equations
Global almost sure asymptotic stability of solutions of some nonlinear stochastic difference equations with cubic-type main part in their drift and diffusive part driven by square-integrable martingale differences is proven under appropriate conditions in R1. As an application of this result, the asymptotic stability of stochastic numerical methods, such as partially drift-implicit θ-methods wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2012
ISSN: 0377-0427
DOI: 10.1016/j.cam.2012.01.015